
vol. 182, no. 3 the american naturalist september 2013

When Unreliable Cues Are Good Enough

Matina C. Donaldson-Matasci,1,* Carl T. Bergstrom,2 and Michael Lachmann3

1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721; 2. Department of Biology,
University of Washington, Seattle, Washington 98195; and Santa Fe Institute, Santa Fe, New Mexico 87501; 3. Department of
Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany

Submitted June 20, 2012; Accepted March 15, 2013; Electronically published July 12, 2013

abstract: In many species, nongenetic phenotypic variation helps
mitigate risk associated with an uncertain environment. In some
cases, developmental cues can be used to match phenotype to en-
vironment—a strategy known as predictive plasticity. When envi-
ronmental conditions are entirely unpredictable, generating random
phenotypic diversity may improve the long-term success of a lin-
eage—a strategy known as diversified bet hedging. When partially
reliable information is available, a well-adapted developmental strat-
egy may strike a balance between the two strategies. We use infor-
mation theory to analyze a model of development in an uncertain
environment, where cue reliability is affected by variation both within
and between generations. We show that within-generation variation
in cues decreases the reliability of cues without affecting their fitness
value. This transpires because the optimal balance of predictive plas-
ticity and diversified bet hedging is unchanged. However, within-
generation variation in cues does change the developmental mech-
anisms used to create that balance: developmental sensitivity to such
cues not only helps match phenotype to environment but also creates
phenotypic diversity that may be useful for hedging bets against
environmental change. Understanding the adaptive role of devel-
opmental sensitivity thus depends on a proper assessment of both
the predictive power and the structure of variation in environmental
cues.

Keywords: bet hedging, developmental plasticity, variable environ-
ment, delayed germination, information, environmental cue.

Introduction

For species living in variable environments, often there is
no single phenotype that is well suited for all conditions.
Such species may evolve strategies that produce a variety
of phenotypes, each performing well under different con-
ditions. We can classify these strategies into two types.
First, predictive plasticity is the development of pheno-
types that match the environmental conditions in which
they are found. For example, acorn barnacles develop ei-
ther a bent or a conical shell shape, depending on the
presence of predatory snails (Lively 1986). Second, a di-
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versified bet-hedging strategy produces a variety of phe-
notypes that are not matched to the environmental con-
ditions as a way of managing the risk associated with
widespread events like drought and floods (Seger and
Brockmann 1987). Desert annual plants, for example,
must germinate, grow, and reproduce all within 1 year—
but extreme year-to-year variation in precipitation means
that many years are unsuitable. Such plants often use a
strategy of delayed germination: in any given year, only a
fraction of the seeds produced by one individual will ger-
minate, reducing the risk of losing all offspring to drought
(Cohen 1966).

What ecological factors affect the adaptive evolution of
predictive plasticity and/or diversified bet hedging? The
first important factor is the level at which environmental
variation occurs: within and/or between generations. The-
ory shows that diversified bet hedging is useful only when
environmental conditions vary from one generation to the
next. This is because when conditions vary only within
generations the mean fitness is the same in every gener-
ation. The strategy that is most likely to prevail is to pro-
duce the phenotype that does best on average. On the
other hand, when conditions vary between generations
mean fitness varies between generations as well. Which
strategy prevails depends on the sequence of environmen-
tal conditions, but the most likely winner is the strategy
that maximizes the geometric mean fitness across envi-
ronments (Dempster 1955). This strategy may involve pro-
ducing a mixture of several phenotypes. The second im-
portant factor is how well the selective environment can
be predicted using cues available during development:
without informative developmental cues, predictive plas-
ticity would be impossible. Putting these two factors to-
gether, when the environment varies from one generation
to the next and partially informative cues help predict that
environment, we may see the evolution of integrated strat-
egies involving both diversified bet hedging and predictive
plasticity (Cohen 1967; Haccou and Iwasa 1995).

In all this research, however, a third potentially impor-
tant factor has been almost completely overlooked: the
level at which variation in developmental cues occurs. Pre-

This content downloaded from 128.095.104.109 on October 06, 2019 22:58:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

mailto:matina@email.arizona.edu


314 The American Naturalist

vious theoretical models of evolution in a fluctuating en-
vironment have explored the consequences of unreliability
in shared cues, with no variation between individuals
within a generation (but see Donaldson-Matasci 2008;
Rivoire and Leibler 2011). However, like the selective en-
vironment itself, the developmental cues used to predict
that environment may vary within as well as between gen-
erations. For example, some multivoltine butterflies show
seasonal polyphenism: the ones that pupate in cooler parts
of the year show greater wing melanism and thus stay
warm. In some cases wing melanism seems to be controlled
by day length during the pupal period, while in others it
may be controlled by temperature during the pupal period
or even some combination of the two (Hoffmann 1978).
Day length is a cue that is shared by all individuals in the
same generation, and in predictable environments it is a
good predictor of the thermal regime that adults will ex-
perience. However, when it is wrong—as in an unseason-
ably cool summer—the consequences will affect the entire
generation of butterflies. Pupal temperature, instead, is a
cue that may vary from individual to individual, depending
on the microhabitat of the cocoon. It might be misleading
for two reasons: either the individual happens to be in a
particularly warm or cool spot or there is a sudden change
in temperature that occurs between the pupal period and
the adult stage. The former source of unreliability affects
just one individual, while the latter affects the entire gen-
eration; in general, we can expect a cue to have a mixture
of both.

In addition, previous work has generally focused on the
adaptive function of phenotypic diversity (e.g., diversified
bet hedging or predictive plasticity) with relatively little
discussion of the developmental mechanisms used to gen-
erate that diversity. For predictive plasticity, only one
mechanism will do: the developmental process must be
sensitive to environmental cues that can help predict the
selective environment. For diversified bet hedging, how-
ever, phenotypic diversity may be generated in a number
of ways; in Cooper and Kaplan’s (1982) terminology, there
are different “coins” that can be used for “adaptive coin-
flipping.” For example, stochastic gene expression may
drive the developmental trajectory along one of several
alternative pathways (McAdams and Arkin 1997). Alter-
natively, the developmental pathway may be sensitive to
subtle differences in microclimate that are completely in-
dependent of the shared selective environment and that
themselves have no direct bearing on fitness (e.g., Simons
and Johnston 2006). In general, we will classify the mech-
anisms for generating phenotypic diversity into two
groups: developmental stochasticity, which is due to in-
trinsic developmental noise, and developmental sensitivity,
which is shaped by extrinsic environmental conditions.

In this article, we use an information theoretic approach

to show that the adaptive evolution of developmental plas-
ticity depends critically on how unreliability in develop-
mental cues arises: from variation among individual cues
within and/or between generations. Both kinds of variation
make individuals less certain about what environmental
conditions they will experience. However, only variation
in cues between generations affects the environmental un-
certainty that is shared by all individuals within a gener-
ation. It is this shared uncertainty that determines the
optimal amount of diversified bet hedging and thus the
long-term fitness that may be achieved. How diversified
bet hedging is actually realized—via developmental sto-
chasticity and/or sensitivity—depends instead on the
amount of variation in developmental cues within gen-
erations.

An Example: Drought Prediction in Desert Annuals

Cohen’s classic model of bet hedging is based on the bi-
ology of desert annual plants (Cohen 1966). Because they
live in such a harsh environment and have only one chance
to reproduce, these plants are particularly vulnerable to
the risk of drought. Many desert annual plants avoid this
problem by diversified bet hedging: even under highly con-
trolled, ideal laboratory conditions, only a fraction of seeds
will germinate, while the rest remain dormant (Freas and
Kemp 1983; Philippi 1993). In good years, those seeds that
do germinate are likely to reproduce successfully. In
drought years, even though some seeds germinate and die,
the ones that remain dormant retain the chance to per-
petuate the lineage in a future year. Cohen showed that
when there is no chance of survival in bad years, the op-
timal fraction of seeds germinating each year is equal to
the fraction of good years. Thus, if severe drought occurs
in about 20% of years, we would expect approximately
80% of seeds to germinate each season.

When environmental cues can help predict future en-
vironmental conditions, it may be possible to do even
better (Cohen 1967). For example, early and plentiful rains
during the germination season may indicate that a good
growing season is likely, while late or sparse rains may
indicate the opposite (Philippi 1993). Cohen showed that
the optimal fraction of seeds germinating in response to
a cue is equal to the conditional probability of a good year
given that cue. Say that severe drought occurs in about
40% of years overall, but in years with a good germination
season there is just a 20% chance of drought, while with
a poor germination season there is a 60% chance of
drought. In this situation we would expect about 80% of
seeds to germinate in response to a good germination
season but only about 40% of seeds to germinate in re-
sponse to a poor germination season. Such a strategy com-
bines elements of predictive plasticity, because seeds
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change their probability of germination in response to
cues, and diversified bet hedging, because not all seeds will
germinate even under the best conditions.

The above calculations assume that all individuals re-
ceive exactly the same cue, that is, all seeds receive exactly
the same amount of rain during the germination season.
However, due to the patchy nature of desert rainfall, dif-
ferent seeds may receive slightly different amounts of rain.
Say that in years with a good germination season (i.e.,
years where the average seed receives early and plentiful
germination rain) 20% of seeds receive poor germination
rain, while in years with a poor germination season 40%
of seeds nonetheless receive good germination rain. If ev-
ery seed that received good germination rain were to ger-
minate while those that received poor germination rain
did not, this would produce just the same patterns of
phenotypic variation as the developmental strategy de-
scribed above: 80% germinate in a good germination sea-
son, while 40% germinate in a poor germination season.
Critically, however, now the within-generation variation
in phenotype is caused not by developmental stochasticity
but by within-generation variation in the environmental
cue that is received. This is particularly surprising if we
think about forecasting from an individual seed’s per-
spective. Across years, of all seeds that receive good ger-
mination rains, we can expect only two-thirds of them to
escape drought (see app. A for calculations). Nonetheless,
all of them germinate. On the other hand, of all seeds that
receive poor germination rains, we would expect half of
them to escape drought—yet none of them germinate.

This simple (if contrived) example illustrates three im-
portant points. First, variation in the cues that individuals
receive means that individuals obtain less information
about the shared environmental conditions they will ex-
perience. Second, strong sensitivity to such cues can create
within-generation phenotypic diversity, spreading the risk
among individuals and obviating the need for develop-
mental stochasticity. Third, the phenotypic distribution
created by the optimal strategy in response to cues with
individual variation may in some cases be the same as for
the optimal strategy in response to cues without individual
variation. Together, these observations suggest that within-
generation variation in cues is not necessarily disadvan-
tageous, even though it reduces individuals’ abilities to
predict fitness-relevant aspects of the environment. In the
following section, we develop a model of developmental
plasticity in an uncertain environment. The model is de-
signed to highlight the role of variation in developmental
cues within and between generations and will allow us to
explore these points more thoroughly.

A Model of Developmental Plasticity
in Response to Unreliable Cues

We model a species with discrete, nonoverlapping gen-
erations inhabiting a variable environment. Population-
level risk, in which the environmental state varies from
one generation to the next, affects every individual in the
population. In each generation, the state of the selective
environment e is drawn from a distribution over aPr(e)
discrete set of possible environmental states. An individ-
ual’s phenotype is determined by its developmental tra-
jectory, which is shaped by its genotype, the conditions it
experiences during development, and developmental
noise. Each individual observes a developmental cue c and
develops a phenotype x , which remains fixed over its life-
time. For simplicity, we assume that each individual pro-
duces one of several discrete phenotypes. We model this
by assuming that the individual’s genotype encodes a de-
velopmental strategy g, which specifies the chance of de-
veloping each phenotype in response to each develop-
mental cue. The developmental strategy may thus involve
developmental stochasticity, developmental sensitivity to
the cue, or some combination of the two.

The developmental cue c received by an individual con-
veys only partial information about the environmental
state e. If developmental cues within a generation are
strongly correlated, a misleading cue might cause many
individuals to develop the wrong phenotype and die with-
out being able to reproduce (shared uncertainty). On the
other hand, if developmental cues are weakly correlated,
even if some individuals receive misleading cues others
will not, so some individuals will always develop the cor-
rect phenotype (individual uncertainty). We will separate
these two types of uncertainty by identifying a global pre-
dictor q—some feature of the shared environment that
imperfectly predicts the selective environment but that it-
self does not directly affect fitness. The developmental cue
received by each individual in turn imperfectly reflects the
global predictor but is otherwise independent of the de-
velopmental cues others receive. Shared uncertainty is the
result of a mismatch between the selective environment
and the global predictor, while individual uncertainty is
the result of a mismatch between the global predictor and
the individual’s developmental cue. In the example of de-
sert annual plants, the global predictor would be the over-
all quality of the germination season, as determined by
the amount and timing of germination rain received on
average. The selective environmental state would be the
overall quality of the growing season, and the individual
developmental cue would be the amount of rain an in-
dividual seed receives during the germination season.

Practically, it may not always be easy to identify an
environmental characteristic that acts as a global predic-
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Figure 1: Stochastic model of developmental plasticity in response
to individually variable cues: (1) the environmental state e is drawn
from the distribution ; (2) the global predictor q is drawn fromPr(e)
the conditional distribution , depending on the environmen-Pr(qFe)
tal state e; (3) for each individual, the developmental cue c is drawn
(independently of all other individual cues) from the conditional
distribution , depending on the global predictor q ; and (4)Pr(cFq)
for each individual, the phenotype x is drawn from the conditional
distribution , determined by its developmental strategy g andg (xFc)
its developmental cue c.

tor—a feature shared by a whole generation that is cor-
related with the environmental state and upon which all
individual developmental cues are based. In appendix B,
we argue that under fairly general conditions it is none-
theless possible to identify one mathematically if the dis-
tribution of developmental cues within and between gen-
erations is known. In fact, the global predictor may be
thought of as indicating what proportion of all individuals
receive each possible cue. For example, if there are only
two different cue types, then q could be a real number
between 0 and 1 and indicate the probability of receiving
the first cue type. However, if there are really discrete types
of environments, as we assume (e.g., “good” vs. “bad”
years), and developmental cues are reflecting that struc-
ture, we might expect to see discrete types of generations
when characterized in terms of the proportions of indi-
viduals receiving each type of cue (e.g., either 75% of
individuals receive a cue suggesting a good year or only
25% do). Even if there are not discrete types of generations
in this sense, we argue in appendix B that for the purposes
of finding the optimal strategy we can cluster different
types of generations together into k different groups (if
there are k different possible developmental cues) and treat
them as if they were discrete. For this reason, we will
assume throughout the main text that the global predictor
is drawn from a discrete set of possibilities of the same
size as the set of possible developmental cues.

Mathematically, the whole process can be described as
follows (see fig. 1). In each generation, an environmental
state e is chosen from the distribution . Then, a globalPr(e)
predictor q is chosen from the conditional distribution

. These two variables are shared by the entire pop-Pr(qFe)
ulation. Next, for each individual in the population an
individual cue c is chosen from the conditional distribution

; the cue for each individual is chosen independentlyPr(cFq)
from the cues for all other individuals. Finally, for each
individual in the population a phenotype x is chosen from
the conditional distribution , which characterizes theg(xFc)
developmental strategy g.

The fitness of each individual is determined by its phe-
notype x and the shared environmental state e according
to the fitness function . In the main body of thisf(x, e)
article, we will assume for simplicity that each phenotype
x survives in just one environment, ex ; that is, f(x, e) 1

if and only if . In appendix C, we extend the0 e p ex

results to more general fitness functions using the frame-
work introduced in Donaldson-Matasci et al. (2008). We
also assume that any differences between individuals in
the developmental cues they receive do not reflect fitness-
relevant differences in their environment. That is, we as-
sume that fitness is directly influenced only by e, not by
c. In “Discussion,” we will consider the implications of
this assumption.

In a temporally varying environment, the genotype that
is most likely to fix over the long term is the one whose
expected long-term growth rate is greatest (as long as there
is no interaction between phenotypes, e.g., frequency-
dependent selection). A good estimator of the long-term
growth rate of a genotype is the mean log fitness, or, equiv-
alently, the log of the geometric mean fitness (Dempster
1955; Cohen 1966; Cooper and Kaplan 1982). We write
the expected long-term growth rate as the mean (over
generations) of the log of the mean fitness (within gen-
erations):

¯r(g) p Pr(e) Pr(qFe) log f(gFe, q)� 2
e, q

p Pr(e) Pr(qFe) (1)�
e, q

# log Pr(cFq) g(xFc)f(x, e) .� �2 ( )
c x

(Note that while any base could be used for the logarithm,
we will use base 2 because that is the standard in infor-
mation theory.) The mean within-generation fitness of a
genotype is determined by the distribution of the phe-
notypes it creates, which depends not only on its devel-
opmental strategy g but also on the distribution of de-
velopmental cues, as given by . The resulting growthPr(cFq)
rate is linear in but not in (see eq. [1]).Pr(qFe) Pr(cFq)
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This means that the two sources of unreliability—variation
in cues between individuals and year-to-year variation in
cue distributions—have fundamentally different effects on
the optimal strategy and on the maximum attainable
growth rate.

An Information-Theoretic Perspective

The field of information theory was developed by Claude
Shannon as a way to quantify the efficiency of information
transfer over unreliable channels (Shannon 1948). We will
use it to quantify the relationship between cue and en-
vironment (environmental uncertainty) and the relation-
ship between cue and phenotype (developmental strategy).

The fundamental measure in information theory is en-
tropy, which describes the amount of uncertainty about
a, the outcome of some random process A:

H(A) p � Pr(a) log (Pr(a)). (2)� 2
a

Entropy depends on the probabilities of different out-
comes; it is highest when there are many different pos-
sibilities and each of them is equally likely. One “bit” of
entropy corresponds to two different possible outcomes
that are equally likely, while n bits of entropy correspond
to 2n equally likely outcomes. If we cannot observe the
outcome of A directly but can instead observe the outcome
of a linked random process B, our uncertainty about a
may be reduced. To measure the uncertainty that remains
once the outcome of B has been observed, we can calculate
the conditional entropy:

H(AFB) p � Pr(b) Pr(aFb) log (Pr(aFb)). (3)� � 2
b a

The mutual information between the two random pro-
cesses is the difference between the entropy and the con-
ditional entropy:

I(A; B) p H(A) � H(AFB) (4)

Pr(aFb)
p Pr(b) Pr(aFb) log .� � 2 ( )Pr(a)b a

Mutual information is a measure of how much the un-
certainty about the outcome of one random process is
reduced by observing the outcome of another process. It
is maximal when knowing one outcome allows the other
to be predicted perfectly; it is 0 when knowing one out-
come does not change our prediction about the other at
all.

We will first use the relationship between uncertainty
and information to quantify the relationship between the
selective environment, e, and the developmental cue, c :

H(E) p H(EFC) � I(E; C). (5)

This says that the total uncertainty about the environ-
mental state can be divided into the uncertainty that re-
mains once an individual’s developmental cue has been
observed and the information the cue contains about the
environmental state.

Similarly, we can quantify the relationship between the
selective environment, e, and the global predictor, q:

H(E) p H(EFQ) � I(E; Q). (6)

This says that the total uncertainty about the environ-
mental state can be divided into the uncertainty that would
remain if the state of the global predictor could be direct-
ly observed and the information the global predictor
contains.

We can also use information theory to describe the de-
velopmental strategy. The entropy H(X) represents our
uncertainty about which phenotype will be produced—a
measure of phenotypic diversity similar to the widespread
use of Shannon entropy in ecology as a measure of species
diversity (e.g., Pielou 1969). We quantify the phenotypic
diversity according to our uncertainty about which phe-
notype an individual develops, x, and how that relates to
the developmental cue it receives, c :

H(X) p H(XFC) � I(X; C). (7)

This says that the total uncertainty about the phenotype
can be divided into the uncertainty remaining once the
developmental cue is known and the information the de-
velopmental cue gives about which phenotype will de-
velop. The former, , is a measure of the amountH(XFC)
of developmental stochasticity, while the latter, , isI(X; C)
a measure of the amount of developmental sensitivity to
the cue.

Similarly, we can also describe the consequences of the
developmental strategy for phenotypic diversity produced
within and between generations. To do this, we quantify
the relationship between the phenotype, x , and the global
predictor, q :

H(X) p H(XFQ) � I(X; Q). (8)

This says that the total uncertainty about the phenotype
can be divided into the uncertainty remaining once the
global predictor is known and the information the global
predictor gives about which phenotype will develop. We
will argue that the former, , is a measure of theH(XFQ)
amount of diversified bet hedging, while the latter,

, is a measure of the amount of predictive plasticity.I(X; Q)

Model Results

To solve for the optimal developmental strategy, we must
find the conditional probability distribution thatg(xFc)
maximizes the long-term growth rate given in equation

This content downloaded from 128.095.104.109 on October 06, 2019 22:58:46 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



318 The American Naturalist

I(X;Q)

I(E;C)

H(E|C) H(X|C)

I(X;C)

an optimal developmental strategy

phenotypic
uncertaintyBenvironmental

uncertaintyA

aggregate 
perspective

individual 
perspective

developmental 
sensitivity to cue

developmental 
stochasticity

H(X|Q)

predictive 
plasticity

diversified 
bet-hedging

H(E)

H(E|Q)
H(E|C)

H(E) H(X)

H(X|C)

H(X|Q)

H(X)
individual information 
about environment

individual uncertainty 
about environment

I(E;Q)

H(E|Q)

reduction in shared 
uncertainty about 
environment
shared uncertainty 
about environment

aggregate 
perspective

individual 
perspective

0.2

0.4

0.6

0.8

1.0
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(B), as viewed from the individual perspective (in response to the developmental cue) and from the aggregate perspective (in response to
the global predictor). In the text, we show that taking the aggregate perspective allows us to see the connection between environmental
uncertainty and adaptive phenotypic diversity: and . Parameter values: ,H(E) p H(X) H(EFQ) p H(XFQ) Pr(e ) p Pr(e ) p 0.51 2
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(1). The solution is best understood by applying the prin-
ciple of proportional betting: when several outcomes are
possible and only betting on the correct outcome yields
any payoff, the optimal scheme for long-term investment
is to place money on each outcome according to its prob-
ability of occurring—regardless of the associated payoff
(Kelly 1956). For example, in Cohen’s classic model of
diapause in desert annual plants, the lineage that maxi-
mizes its long-term growth rate is the one whose condi-
tional probability of germination in response to a cue
equals the conditional probability of a good year (Cohen
1967). This simple, intuitive result depends on two special
assumptions: first, that there is no chance of reproduction
in a bad year; and second, that all individuals receive the
same cue. Our focus in this article is relaxation of the
second assumption; in appendix C, we show that our re-
sults still hold when the first assumption is relaxed as well.

When developmental cues vary from individual to in-
dividual, the principle of proportional betting does not
directly apply. However, we can still solve for the optimal
response to the global predictor as if individuals could
observe it directly and then ask whether that response
could still be achieved by a developmental strategy that
was sensitive only to individual developmental cues. Ac-
cording to the principle of proportional betting, the op-
timal strategy in response to the global predictor, ,ĝ(xFq)
should match the probability of each phenotype to the
conditional probability that its environment occurs:

Pr(qFe ) Pr(e )x xĝ(xFq) p Pr(e Fq) p for all x, q. (9)x Pr(q)

When developmental cues vary from one individual to the
next, the response to the global predictor depends both
on within-generation variation in the cues and on the
developmental strategy in response to those cues. We call
the resulting aggregate response to the global predictor the
effective strategy:

ḡ(xFq) p g(xFc) Pr(cFq). (10)�
c

A developmental strategy that can achieve the op-g(xFc)
timal effective strategy is the optimal developmental strat-
egy. Combining equations (9) and (10), we get the con-
ditions for the optimal developmental strategy, :ĝ(xFc)

Pr(qFe ) Pr(e )x xĝ(xFc) Pr(cFq) p for all x, q. (11)�
Pr(q)c

Note that this criterion may not always be achievable, given
the requirement that represent a feasible developmentalĝ
strategy.

Recasting equation (9) in the information-theoretic
framework established in the section titled “An Infor-
mation-Theoretic Perspective,” we see that, if the optimal
effective strategy can be achieved, . ThisH(XFQ) p H(EFQ)
also means that and thatH(X) p H(E)

I(X; Q) p I(E; Q). (12)

That is, the phenotypic diversity that is produced within
and between generations as an indirect response to the
global predictor mirrors the uncertainty and information
about the environment given the global predictor (see fig.
2). This means that, by looking at both environmental
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stochasticity: , again except when the developmental cue perfectly reflects the global predictor (B). Note that if there isH(XFC ) ! H(XFQ)
too much within-generation variation in the cue, the optimal developmental strategy is to use no stochasticity at all (as shown here, for

). Both panels: and ; the X-axis shows the value ofPr(c Fq ) p Pr(c Fq ) ! 0.75 Pr(e ) p Pr(e ) p 0.5 Pr(q Fe ) p Pr(q Fe ) p 0.81 1 2 2 1 2 1 1 2 2

, as they vary together.Pr(c Fq ) p Pr(c Fq )1 1 2 2

uncertainty and phenotypic diversity from the aggregate
perspective (how they relate to the global predictor Q),
we can see the connection between the environmental
characteristics and the optimal developmental strategy.

How can we interpret this aggregate perspective on the
developmental strategy? As we saw in equation (1), it is
the aggregate response to the global predictor that deter-
mines the long-term growth rate and is therefore the met-
ric by which adaptive fit can be determined. For this rea-
son, we argue that it is appropriate to measure diversified
bet hedging and predictive plasticity at the level of the
effective strategy. Thus, we use , the uncertaintyH(XFQ)
about the phenotype once the global predictor is known,
to measure the amount of diversified bet hedging and

, the amount of information that the global pre-I(X; Q)
dictor provides about the phenotype, to measure the
amount of predictive plasticity.

Here we have shown that the optimal amount of pre-
dictive plasticity is exactly equal to the amount of infor-
mation the global predictor provides about the environ-
ment (see eq. [12]). However, this strong equivalence
depends on the assumption that each phenotype survives
in just one environment. In appendix C, we show that
even when that assumption is relaxed, it is nonetheless the
case that the relationship between the environmental state
and the global predictor determines the optimal balance
of diversified bet hedging and predictive plasticity.

Individuals Receive Less Information
about the Environment

How much information does an individual gain about the
environment from a developmental cue? How does indi-
vidual variation in developmental cues affect the amount
of information they contain? To answer this, we need to
compare the amount of information in the developmental
cue, , to the amount of information in the globalI(E; C)
predictor, . For the example shown in figure 2, theI(E; Q)
global predictor provides 0.189 bits of information about
the environment ( andPr(e Fq ) p Pr(e Fq ) p 0.751 1 2 2

), while the developmentalPr(e Fq ) p Pr(e Fq ) p 0.251 2 2 1

cue provides only 0.066 bits of information (Pr(e Fc ) p1 1

and ). InPr(e Fc ) p 0.65 Pr(e Fc ) p Pr(e Fc ) p 0.352 2 1 2 2 1

figure 3A, we show an example where the developmental
cue varies from being completely independent of the global
predictor (i.e., having maximal within-generation varia-
tion) to being completely dependent on the global pre-
dictor (i.e., having no within-generation variation). Except
when there is no variation within generations at all, the
developmental cue always leaves an individual with more
environmental uncertainty than the global predictor
would.

In fact, it is generally true that the global predictor
carries more information about the environment than the
developmental cue does:
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I(E; Q) ≥ I(E; C). (13)

This is because the developmental cue depends on the
environment only via the global predictor; that is, if we
knew the global predictor, then knowing the developmen-
tal cue would not give any additional information about
the environment (see fig. 1). Under these conditions, we
can apply a fundamental theorem of information theory
known as the data processing inequality (see, e.g., Cover
and Thomas 1991). This theorem tells us that only when
the developmental cue is exactly equal to the global pre-
dictor—that is, there is no variation between individuals
in the cues received—do they provide the same amount
of information about the environment. Otherwise, the de-
velopmental cue must provide less information.

The Optimal Strategy Is More Sensitive
to Developmental Cues

We have seen that variation between individuals in devel-
opmental cues reduces the amount of information the cues
transmit, making it harder to predict environmental con-
ditions. One might expect individuals to pay more attention
to more reliable cues and less attention to less reliable cues.
To examine this, we need to see how individual variation
in cues affects the optimal balance of developmental sen-
sitivity and stochasticity in response to those cues. For the
example shown in figure 2, the optimal strategy produces
1 bit of phenotypic diversity (i.e., an equal mixture of the
two phenotypes) via a combination of 58.6% sensitivity and
41.4% stochasticity ( andPr(x Fc ) p Pr(x Fc ) p 0.9171 1 2 2

; andPr(x Fc ) p Pr(x Fc ) p 0.083 H(XFC) p 0.4141 2 2 1

). In contrast, if there were no variation inI(X; C) p 0.586
the environmental cues (i.e., individuals could directly ob-
serve the global predictor), the optimal strategy would be
to produce the same total amount of phenotypic diversity
but via only 18.9% sensitivity and 81.1% stochasticity. This
is just the opposite of our expectation: the optimal strategy
is in fact to be less stochastic and more sensitive to a variable
and thus less reliable cue. For the example shown in figure
3B, we see that this holds true for any amount of individual
variation between developmental cues.

To show this more generally, we need to compare the
optimal amount of developmental sensitivity, , toI(X; C)
the amount that would be optimal if there were no var-
iation between developmental cues. We have already
shown that the optimal amount of predictive plasticity,

, is fixed regardless of the amount ofI(X; Q) p I(E; Q)
variation in developmental cues (see eq. [12]). To see the
relationship between and , we can again useI(X; C) I(X; Q)
the data processing inequality. The phenotype depends on
the global predictor only indirectly, via the developmental
cue (see fig. 1). This means that the global predictor gen-

erally provides less information about the phenotype than
the developmental cue does:

I(X; Q) ≤ I(X; C). (14)

These quantities are equal only when there is no individual
variation between cues, so the developmental cue is a per-
fect reflection of the global predictor and they both provide
the same amount of information about the phenotype.
This means that as long as there is some individual var-
iation in developmental cues, the optimal amount of de-
velopmental sensitivity exceeds the optimal amount of pre-
dictive plasticity.

The Fitness Value of Information Stays the Same

To measure the value of using a developmental cue, we
can compare the fitness for the optimal developmental
strategy in response to that cue to the fitness for the op-
timal strategy without it. This indicates the cue’s potential
to increase fitness—in our case, the long-term growth rate
of a lineage. We have previously shown that, for cues that
are shared by all individuals in a generation, the amount
of information the cue provides about the environment is
an upper limit on the fitness value it confers (Donaldson-
Matasci et al. 2010).

What happens if we add variation in the developmental
cues within generations—how does the value of a cue
relate to the amount of information it carries about the
environment? In general, adding within-generation vari-
ation actually has no effect on its value at all, as long as
the amount of variation is not too large. This is because
whenever the conditions for equation (11) are met, the
optimal effective strategy in response to the global pre-
dictor—proportional betting—can actually be achieved.
This means that even though individuals do not observe
the global predictor directly, they manage to do just as
well as if they could. In such cases, the value of the cue
does not depend on how much information individuals
actually have, ; it depends on how much infor-I(E; C)
mation they would have if they could directly observe the
global predictor, .I(E; Q)

What happens if within-generation variation in devel-
opmental cues is so high that proportional betting is im-
possible? We know that proportional betting is optimal if
it can be achieved, so any other strategy must be strictly
worse. The information provided by the global predictor
thus places an upper limit on how much the growth rate
can be improved—and as long as within-generation var-
iation is not too high, that limit can in fact be achieved.

It may seem surprising that the value of using a cue is
determined by how much information the global predictor
provides about the environment, , even though thatI(E; Q)
is more information than individuals actually have. The
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reason is this: the value of using a cue lies in its ability to
reduce the amount of diversified bet hedging that the op-
timal strategy requires (Donaldson-Matasci et al. 2010).
Diversified bet hedging is driven by uncertainty about the
environment that is shared by all individuals in the pop-
ulation. The global predictor, because it is shared by all,
reduces shared uncertainty by an amount (see fig.I(E; Q)
2A). Adding variation in the cue that is not shared while
increasing the uncertainty an individual has about the en-
vironment does not affect the shared uncertainty—so it
does not affect the optimal amount of diversified bet hedg-
ing. However, it does affect the means by which diversified
bet hedging is achieved. When variation in cues occurs
within generations, a combination of developmental sto-
chasticity and sensitivity to cues is used to generate the
right amount of phenotypic diversity (see fig. 2B).

Discussion

The importance of the distinction between environmental
variation within and between generations is well recog-
nized where fitness functions are concerned (e.g., Seger
and Brockmann 1987; Frank and Slatkin 1990; Moran
1992; Robson 1996). It stands to reason that, for devel-
opmentally plastic organisms, distinguishing within- and
between-generation variation in developmental cues might
be just as important. A number of authors have discussed
the connection between information theory and fitness in
a fluctuating environment, showing that the fitness value
of a shared environmental cue is in many cases equivalent
to the amount by which it reduces uncertainty about
shared environmental conditions (Cohen 1967; Haccou
and Iwasa 1995; Bergstrom and Lachmann 2004; Donald-
son-Matasci et al. 2010). In this article, we extend that
connection to include developmental cues that are not
shared (see also Rivoire and Leibler 2011). When all in-
dividuals in the same generation receive the same mis-
leading cue, the uncertainty created by any error in the
cue is shared uncertainty. It is this kind of uncertainty that
determines how a developmental strategy should invest in
different phenotypes within and between generations. On
the other hand, if some individuals receive a misleading
developmental cue while others do not, this creates un-
certainty about the environment at the individual level—
and diversified bet hedging does not help with this type
of uncertainty. The value of a developmental cue lies there-
fore not in how much it reduces an individual’s uncer-
tainty about the environment it will encounter but rather
in how much it reduces shared uncertainty about the en-
vironment. This reduction in shared uncertainty deter-
mines how much the optimal strategy can reduce the
amount of diversified bet hedging, which in turn deter-

mines the increase in long-term growth rate (or geometric
mean fitness) that can be achieved by using the cue.

In our model, we have discussed developmental cues
that provide information only about shared environmental
conditions, not about individual variation in the selective
environment. In the example of butterfly wing melanism,
the individual variation in pupal temperature reflects dif-
ferences in cocoon placement—something that will not
affect the temperature regime experienced by the adult
butterfly. However, in other cases differences between in-
dividuals in developmental cues may reflect real differences
in the selective environment that those individuals expe-
rience. For example, tadpoles developing in temporary
pools may metamorphose late, developing into large, high-
fitness adults, or metamorphose early, to evade the risk
that the pool dries up before metamorphosis is complete.
Some species living in highly variable environments may
adjust their development rate in response to cues indi-
cating pool drying, such as increased salinity or reduced
swimming volume (Denver et al. 1998; Richter-Boix et al.
2006). These cues provide an individual not only with
information about the warm, dry weather conditions af-
fecting all other tadpoles in the same generation but also
with information that its pool in particular is drying up.
Both of these would suggest that accelerating metamor-
phosis would be a good strategy, but the former is infor-
mation about shared environmental variation, while the
latter is information about individual environmental var-
iation. In general, it is only uncertainty about shared en-
vironmental conditions that drives the adaptive evolution
of diversified bet-hedging strategies. We have shown that
developmental cues that vary within generations are more
valuable than would be expected from the amount of in-
formation they provide about the shared environment. If
cues could provide information about an individual’s own
environmental conditions as well, they would become
more valuable still.

Numerous empirical tests have now suggested that di-
versified bet hedging could play an adaptive role in a va-
riety of life-history traits, such as delayed germination of
seeds (Philippi 1993; Evans et al. 2007; Venable 2007; Petru
and Tielboerger 2008; Simons 2009), timing of metamor-
phosis in anurans (Lane and Mahony 2002; Morey and
Reznick 2004; Richter-Boix et al. 2006), arthropod dia-
pause (Saiah and Perrin 1990; Danforth 1999; Philippi et
al. 2001; Menu and Desouhant 2002), the trade-off be-
tween egg size and number (Koops et al. 2003), and bac-
terial persistence (Balaban et al. 2004; Kussell et al. 2005;
Acar et al. 2008). Empirical studies that look at both pre-
dictive plasticity and diversified bet hedging as potential
adaptations to environmental uncertainty are still quite
rare, but a few examples suggest strategies that combine
the two (e.g., Danforth 1999; Richter-Boix et al. 2006;
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Sadeh et al. 2009; Khatchikian et al. 2010). Most of these
studies focus on identifying features of the shared envi-
ronment that could be acting as predictive cues. For ex-
ample, germination in desert annual plants is known to
be highly sensitive to the amount of rain that falls within
a restricted germination period; the amount of germina-
tion rain is thought to be an environmental cue that could
help predict the total amount of rainfall for the year (Freas
and Kemp 1983; Philippi 1993; Khatchikian et al. 2010).
Some studies have also used experimental manipulations
to try to pinpoint which features might directly cause the
developmental response. For example, in desert annual
plants, plasticity in germination fraction has been dem-
onstrated in response to variation in day length and tem-
perature conditions (Adondakis and Venable 2004). In
amphicarpic plants (which produce two types of offspring
with different dispersal abilities), both nutrient availability
and local plant density affect the fraction of each type
produced (Sadeh et al. 2009). Although some anuran tad-
poles are known to respond to pool drying by accelerating
metamorphosis, the proximate cues used to recognize that
the pool is drying are as yet unclear (Denver et al. 1998;
Richter-Boix et al. 2006).

Our theoretical results have two important implications
for these studies. First, we show that regardless of the
developmental mechanisms involved, environmental var-
iation and information can select for certain levels of di-
versified bet hedging and predictive plasticity. This means
that an adaptive fit can be assessed just by looking at the
effective response to shared cues like the weather, even if
there is variation in the way individuals experience those
cues. Second, we argue that in order to understand the
adaptive role of the proximate developmental mechanisms
at play, it is necessary to account for natural variation in
developmental cues both within and between generations.
A strong developmental response to an informative cue
that varies within generations may look like a clear-cut
case of predictive plasticity even though the result is sub-
stantial within-generation phenotypic variation. A closer
look at the patterns of variation in both cue and environ-
ment could reveal that the phenotypic diversity is advan-
tageous in a variable environment—and that the cue there-
fore also acts as an adaptive coin flip, used by the
developmental strategy to hedge bets against environmen-
tal variation between generations.
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APPENDIX A

Calculations for an Example: Drought
Prediction in Desert Annuals

In this appendix, we show how to calculate the chance
that an individual experiences a good growing season on
the basis of the germination rain it has received. We use
the numerical values given in the section titled “An Ex-
ample: Drought Prediction in Desert Annuals.” Let

be the probability of a good growing seasonPr(e ) p 3/5g

and be the probability of a poor growingPr(e ) p 2/5p

season. Let be the conditional probabilityPr(e Fq ) p 4/5g g

of a good growing season given a good germination sea-
son and be the conditional probability ofPr(e Fq ) p 2/5g p

good growing season given a poor germination season.
From these constraints, we can calculate the marginal
probabilities of good and poor germination seasons as

, because this satisfies the equa-Pr(q ) p Pr(q ) p 1/2g p

tions andPr(e Fq ) Pr(q ) � Pr(e Fq ) Pr(q ) p Pr(e )g g g g p p g

. Finally, let be thePr(q ) � Pr(q ) p 1 Pr(c Fq ) p 4/5g p g g

conditional probability that an individual receives good
germination rain during a good germination season,
and let be the conditional probabilityPr(c Fq ) p 2/5g p

that an individual receives good germination rain
during a poor germination season. We can calculate
the marginal probability that an individual receives
good or poor germination rain by averaging over
different types of germinations seasons: Pr(c ) pg

, and, similarly,Pr(c Fq ) Pr(q ) � Pr(c Fq ) Pr(q ) p 3/5g g g g p p

.Pr(c ) p Pr(c Fq ) Pr(q ) � Pr(c Fq ) Pr(q ) p 2/5p p g g p p p

We would like to calculate the conditional probability
of a good growing season for an individual that has re-
ceived good germination rain, . To do this, we needPr(e Fc )g g

to distinguish two cases, one in which a good germination
season has occurred and one in which a poor germination
season has occurred:

Pr(e Fc ) p Pr(e , q Fc ) � Pr(e , q Fc )g g g g g g p g (A1)

p Pr(e Fq ) Pr(q Fc ) � Pr(e Fq ) Pr (q Fc ).g g g g g p p g

The conditional probabilities of each type of germination
season given that good germination rain was received can
be calculated using Bayes’s rule:
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Pr(c Fq ) Pr(q )g g g
Pr(q Fc ) p p 2/3g g Pr(c )g (A2)

Pr(c Fq ) Pr(q )g p p
Pr(q Fc ) p p 1/3.p g Pr(c )g

Plugging these numerical values into equation (A1), we
find that

Pr(e Fc ) p 4/5 # 2/3 � 2/5 # 1/3 p 2/3. (A3)g g

Similar calculations show that if an individual receives
poor germination rain, the conditional probability of a
good growing season is .Pr(e Fc ) p 1/2g p

APPENDIX B

The Global Predictor Describes the
Distribution of Individual Cues

We model the developmental cues that individuals receive
according to a two-step stochastic process. First, a shared
global predictor q is generated conditional on the shared
selective environment e ; second, individual cues c are gen-
erated conditional on the global predictor. Two assump-
tions are implicit here: first that a global predictor exists,
and second that individual developmental cues are inde-
pendent of one another given the value of that global
predictor. These may seem like rather restrictive assump-
tions, particularly for those cases in which it is not clear
which environmental variable might correspond to that
global predictor. Here we argue that under a wide variety
of correlational structures among cues received by differ-
ent individuals we can nonetheless mathematically identify
a shared feature of a particular generation that can be
treated like a global predictor. That shared feature turns
out to be the probability distribution of individual cues,
that is, what proportion of all individuals receive each
possible cue.

Say that in each generation we can observe the envi-
ronmental state e as well as the developmental cue ci for
each individual i. In each generation, we will keep track
of the fate of every individual in a single lineage by giving
each individual an index i from 1 to n. We write a sequence
representing one developmental cue for each individual in
the lineage as . Similarly, we use a sequencec p c , … , c1 n

to represent the phenotypes xi adopted byx p x , … , x1 n

all individuals in the lineage. The overall strategy for the
lineage, , represents the probability that the sequenceg(xFc)
of phenotypes x is produced given the sequence of de-
velopmental cues c. The total reproductive output of the
lineage in one generation, , depends on the phe-f(x, e)
notype of each individual and on the environmental state.

Very generally, we can describe the relationship between

the environmental state and the individual cues using the
joint distribution . These two things together canPr(e, c)
be used to define the type of a generation in terms of its
effect on the per capita fitness of a genotype. The expected
long-term growth rate for the strategy g is, therefore,

¯� �r(g) p Pr(e, c) log f(gFe, c)� 2
�e, c (B1)

1
� � � �p Pr(e, c) log g(xFc)f(x, e).� �2

� �ne, c x

To find a simpler form, we would like to distinguish be-
tween generations where the per capita fitness is different
but lump together those that are the same. We will argue
that, under quite reasonable assumptions, it is not im-
portant to keep track of exactly which individual received
which developmental cue.

The first assumption is that each individual’s fitness
depends only on its own phenotype, not on the phenotypes
of other individuals. The second assumption is that each
individual’s phenotype depends only on its own devel-
opmental cue, not on the cues received by others. Given
these two assumptions, the per capita fitness of a strategy
within a particular generation can be rewritten

n
1¯ �f(gFe, c) p g(x p xFc )f(x, e). (B2)�� i in ip1 x

Note that this quantity does not depend on which indi-
vidual received which cue but rather what proportion of
all individuals received each different type of cue. It is
therefore sufficient to distinguish between generations that
have different distributions of developmental cues. We use
the parameter v to describe a distribution of individual
developmental cues, yielding a simpler form for the per
capita fitness of a strategy within a generation:

f̄(gFe, v) p Pr(cFv) g(xFc)f(x, e). (B3)� �
c x

A comparison to equation (1) in the main text shows that
v plays the same role as the global predictor q.

A well-known theorem of de Finetti proves a related
result for exchangeable variables (see, e.g., Feller 1966). A
finite sequence of random variables is ex-C , … , C1 n

changeable if every permutation of these variables has the
same probability distribution, and an infinite sequence is
exchangeable if every finite subsequence is exchangeable.
De Finetti’s theorem states that any infinite, exchangeable
sequence of binary random variables can be understood
as a draw from some probability distribution of a single
random parameter V, followed by a sequence of indepen-
dent Bernoulli trials weighted according to the parameter
v. When generalized to discrete-valued (rather than only
binary) random variables, the parameter v describes the
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probability distribution of individual cues (Hewitt and
Savage 1955). We argue that even if the developmental
cues received by different individuals in the same gener-
ation are not exchangeable variables, they nonetheless act
as if exchangeable, as far as per capita within-generation
fitness is concerned. The only caveat comes when we con-
sider competition between lineages. If the developmental
cues are more strongly correlated within a lineage than
they are between two competing lineages, this simple
breakdown into global predictor and individual develop-
mental cues may not be warranted.

The next question is, what kind of distribution is the
global predictor drawn from? If there are k different possible
values of the developmental cue, any distribution of such
cues lies on a unit . Since the global pre-(k � 1)-simplex
dictor q represents one such distribution, the most general
assumption is to say that it is drawn from a continuous
distribution over that simplex. If the number of individuals
n is consistent from one generation to the next, we could
instead identify q not with the probability distribution of
cues but with a partition of n individuals into k groups,
each group receiving one of the possible developmental cues.
For example, if there were 100 individuals in a generation
and two possible developmental cues indicating two possible
environmental states, q could take on 101 different possible
values. To find the optimal developmental strategy—that is,
what proportion of each phenotype to produce in response
to each of the two different cues—we would need to solve
a system of 101 different equations (eq. [11], one for each
q), with only two free parameters, one for each develop-
mental cue. This system is highly overdetermined. It would
thus be impossible to actually achieve the optimal propor-
tional betting solution for all possible types of generations—
instead we must do the best we can and choose the strategy
that does best overall by optimizing the growth rate given
in equation (1).

We will now show that the same solution can be found
by redefining the global predictor as coming from a dis-
crete set with as many different possible values as there
are different developmental cues. As we have previously
shown (Donaldson-Matasci et al. 2010), when the optimal
proportional betting strategy cannot be achieved, the re-
sulting loss in growth rate depends on the difference be-
tween the optimal strategy and the effective strategy:

¯r(g) p Pr(e, q) log g(x Fq)� 2 e
e, q

p Pr(e, q) log Pr(eFq)� 2
e, q

Pr(eFq)
� Pr(e, q) log (B4)� 2 ḡ(x Fq)e, q e

¯p H(EFQ) � D (Pr(eFq)FFg(x Fq)).KL e

The second term is a measure of the difference between
probability distributions and , known as thePr(eFq) g(x Fq)e

Kullback-Leibler (KL) divergence (e.g., Cover and Thomas
1991). We must find the strategy that minimizes that dif-
ference. First, we can cluster the different types of gen-
erations into k different groups, through . For each′ ′q q1 k

group, we can calculate the marginal probability of each
environment as . This de-′ ′Pr(eFq ) p � Pr(eFq) Pr(qFq )′q�q

fines the best effective strategy for the group of generations
q ′, , because it minimizes the average′ ′ĝ(x Fq ) p Pr(eFq )e

KL divergence for that group. The problem, then, is to
ensure that the clustering of q’s is done in a way that
minimizes the overall KL divergence (a classic centroid-
based clustering problem). Assuming that this has been
done, the best achievable growth rate can be written as

′ ′ˆ ¯r(g) p Pr(e, q ) log g(x Fq )� 2 e′e, q

′ ′p Pr(e, q ) log Pr(eFq )� 2′e, q

Pr(eFq)′ ′� Pr(e, q ) Pr(qFq ) log (B5)� � 2 ′′ ′ Pr(eFq )e, q q�q

′ ′p H(EFQ ) � D (Pr(eFq)FF Pr(eFq )).KL

The first term is exactly what the optimal growth rate
would be if there were really only k different types of
generations, and the second term (which is always positive)
represents the loss due to the fact that not all generations
in each group q ′ are the same. This shows that if we cluster
generations together in the right way, we can find the
optimal strategy and an upper bound on the growth rate
so that even if q seems to be drawn from a continuous
distribution we can transform the problem and treat it as
if it were discrete. In the main text, however, we will simply
assume that q is drawn from a discrete distribution.

APPENDIX C

Results Hold When Phenotypes Survive
in Multiple Environments

The principle of proportional betting—that the optimal
strategy is to produce phenotypes in proportion to the
probability of each environmental state—holds only when
each phenotype can survive in a single environmental state.
In the main body of this article, we have made this as-
sumption for clarity of exposition. However, some of our
results (eqq. [9], [11], and [12]) depend explicitly on this
assumption. In this appendix, we explain how our results
generalize when phenotypes can survive in multiple en-
vironments.

In a previous article, we showed how to generalize the
principle of proportional betting under general fitness
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functions (Donaldson-Matasci et al. 2008). We define the
level of reproductive investment, or specialization, that
each phenotype puts into each possible environment and
show that the optimal strategy mixes phenotypes so that
its reproductive investment in each environmental state
matches the probability of that state. To do this, we define
a set of completely specialized phenotypes y, each of which
survives in only one environmental state e. We rewrite the
fitness profile of each phenotype x across all environments
as a mixture of these completely specialized phenotypes
as follows:

f(x, e) p s(yFx)f(y, e) for all x, e�
y (C1)

p s(yFx)f(y , e),e e

where for all x and if and only if� s(yFx) p 1 f(y, e) 1 0y

, that is, ye is the one phenotype that survives iny p ye

environment e. The function is a measure of thes(yFx)
relative investment the phenotype x puts into the envi-
ronmental state associated with each completely special-
ized phenotype y. We show in Donaldson-Matasci et al.
(2008) that a set of these completely specialized pheno-
types can be defined uniquely for a quite general fitness
function.

We can now rewrite the mean fitness of a genotype g
within a generation (see eqq. [1] and [10]) as follows:

¯ ¯f(gFe, q) p g(xFq)f(x, e)�
x

¯p g(xFq) s(yFx)f(y, e) (C2)� �
x y

′p g (yFq)f(y, e),�
y

where . This shows that the ef-′ ¯g (yFq) p � g(xFq)s(yFx)x

fective strategy , which describes a mixture of phe-ḡ(xFq)
notypes x produced in response to each possible global
predictor q, is equivalent to an effective strategy ,′g (yFq)
which uses the completely specialized phenotypes y. We
know that the optimal mixture for g ′ is proportional bet-
ting (see eq. [9]). This gives the conditions we need to
solve for the optimal developmental strategy :ĝ(xFc)

′ˆPr(eFq) p g (yFq)e

ˆp g(xFq)s(yFx) (C3)� e
x

ˆp Pr(cFq) g(xFc)s(yFx).� � e
c x

We now proceed to show that three results from the main
body of this article still hold with generalized fitness
functions.

In the section titled “The Optimal Strategy Is More

Sensitive to Developmental Cues,” we claim that the op-
timal developmental strategy shows greater developmental
sensitivity when developmental cues vary within a gen-
eration. This proof hinges on the fact that the optimal
relationship between the global predictor and the phe-
notype is unchanged by adding within-generation varia-
tion in developmental cues—that is, is fixed. TheI(X; Q)
same is true here: from equation (C3) we see that the
optimal effective strategy depends only on the re-ĝ(xFq)
lationship between the environmental state and the global
predictor, via , and the fitness matrix, via ,Pr(eFq) s(yFx)e

but not on the relationship between the global predictor
and the individual cues. The rest of the proof follows
without modification.

In the section titled “The Fitness Value of Information
Stays the Same,” we claim that the fitness value of using
a cue is not limited by the amount of information an
individual receives from that cue but rather by the amount
of information the shared global predictor would pro-
vide—even though individuals do not observe it. This is
because when proportional betting can be achieved both
with and without the cue the difference in growth rate is
the mutual information that the global predictor provides
about the environment. Otherwise, the mutual informa-
tion is an upper limit on the value. For general fitness
functions, the optimal strategy is no longer to do pro-
portional betting, but it is nonetheless equivalent to a strat-
egy that does proportional betting with the completely
specialized phenotypes y (see eq. [C3]). As long as the
optimal strategy (with and without the cue) can actually
be achieved even with the set of phenotypes x, the maximal
growth rates will be unchanged—and the upper limit on
the value of the cue, , can actually be achieved.I(E; Q)

What happens when the constraints of the fitness func-
tion make it impossible to achieve the optimal strategy?
In Donaldson-Matasci et al. (2010), we showed that the
value of a shared cue is nonetheless limited by the infor-
mation it provides about the environment: ˆr(g(xFq)) �

. How does this change for cues that areˆr(g(x)) ≤ I(E; Q)
not shared but that may vary between individuals within
a generation? The maximal growth rate without the cue,

, is of course unchanged. The maximal growth rateˆr(g(x))
with an individually variable cue, , can only de-ˆr(g(xFc))
crease compared with the growth rate of the optimal strat-
egy responding directly to the global predictor, .ˆr(g(xFq))
This is because the effective strategies produced by a de-
velopmental strategy responding to an individually vari-
able cue are a subset of the strategies that could be used
in direct response to the global predictor. Therefore, the
value of using a cue that varies within generations is lim-
ited by the information carried in the global predictor even
for general fitness functions.

In the main text, we argue that it is shared uncertainty
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that drives the optimal amount of diversified bet hedging.
In fact, when each phenotype survives in just one envi-
ronment, we can make the stronger statement that the
optimal amount of diversified bet hedging and predictive
plasticity exactly mirrors the amount of shared uncertainty
and information about the environment: H(XFQ) p

and (see fig. 2). For more gen-H(EFQ) I(X; Q) p I(E; Q)
eral fitness functions, however, we can say only that

and that (see eq.H(YFQ) p H(EFQ) I(Y; Q) p I(E; Q)
[C3]). We can interpret this as saying that the optimal
strategy diversifies its investment into different environ-
ments according to the shared environmental uncertainty.
The important point is that adding within-generation var-
iation in developmental cues does not change the optimal
amount of bet hedging because it does not alter the optimal
effective strategy (see eq. [C3]).
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Spring wildflowers (Mexican gold poppy and Coulter’s lupine) blooming in a good year in the Sonoran desert. Photo by M. C. Donaldson-
Matasci.
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