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Predicting an epidemic trajectory is difficult

Claus O. Wilke*"'® and Carl T. Bergstrom®’

Predicting the trajectory of a novel emerging patho-
gen is like waking in the middle of the night and
finding yourself in motion—but not knowing where
you are headed, how fast you are traveling, how far
you have come, or even what manner of vehicle con-
veys you into the darkness. A few scattered anomalies
resolve into defined clusters. Cases accumulate. You
assemble information about temporal sequences,
identify a causative agent, piece together a few trans-
mission histories, try to estimate mortality rates. A few
weeks pass. Everyone wants to know how far the dis-
ease is going to spread, how fast that is going to hap-
pen, and what the final toll will be. They want predictive
models. However, predictive models are difficult to
develop and subject to wide uncertainties. In PNAS,
Castro et al. (1) demonstrate one reason why. They
show that based on early data it is nearly impossible
to determine precisely whether interventions will be
sufficient to quell an epidemic or whether the epidemic
will continue to grow unabated. At best, we can predict
the likelihoods of these opposing scenarios—scenarios
that describe completely different worlds. In one a di-
saster has been narrowly averted, but in the other
millions of people become infected and the global
economy is upended.

The fundamental problem in predicting epidemic
trajectories is the way in which uncertainties compound.
To begin with, epidemics are stochastic processes.
Luck matters—particularly when superspreading is
important—and happenstance shapes patterns of
geographic spread (2). Early on, little is known about
the parameters describing the spread of infection.
What is the generation interval, how long is the infec-
tious window, and what is the basic reproductive num-
ber in any particular setting? How is the disease
transmitted, how long does it remain in the environ-
ment, and what are the effects of seasonality?

Without answers to these questions, it is hard to
predict the impact of infection control and social
distancing measures (3). Suppose an outbreak grows

from 4 cases on day zero to 16 cases on day 6 to
64 cases on day 12. If social distancing cuts the basic
reproduction number Ry by two-thirds, will that be suf-
ficient to stop the spread of disease? Based on the
case counts alone, we cannot tell. If Ry is 2 and trans-
mission occurs after 3 days, the intervention would
succeed. If instead Ry is 4 and transmission occurs
after 6 days, it would fail.

Castro et al. (1) demonstrate that the very nature of
epidemic spread precludes effective prediction based
on early data. They show that even if an epidemic
proceeds according to simple deterministic mathe-
matical dynamics it will be extremely difficult to make
long-range predictions based on observed case num-
bers from the initial phase of the outbreak. This is a
direct mathematical consequence of the exponential
nature of early transmission dynamics. Even minor
inaccuracies in the estimated parameters rapidly com-
pound, so that precise predictions can be made only a
few weeks into the future. Forecasting further out, the
uncertainties become so large that we cannot hope to
predict the actual number of active cases that will
likely be reached (Fig. 1).

What we can do is estimate is the probability with
which a specific outcome may occur. We can calculate—
and with care, visualize (4)—the fraction of predicted tra-
jectories that exceed a certain number of cases by a
certain date, or that reach their maximum below a certain
value, or in which the epidemic is successfully contained.
We can aspire to well-calibrated forecasts, even if there
are constraints on the sharpness with which we can pre-
dict the future.

Castro et al. (1) draw attention to an additional
source of uncertainty. They demonstrate that epidemic
predictions are sensitive to the exact amount of data
available for fitting. We would normally expect that hav-
ing more data is better, and that prediction uncertainty
systematically declines with every additional data point
that is incorporated into the model fit. Instead, how-
ever, uncertainty can increase with added data points,
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Fig. 1. Visualizing uncertainty in predicting epidemic outcomes. All three panels display the same scenario, an epidemic that has been developing
for 33 days. In this particular example, given the observed caseloads for the initial 33 days, there is a 70% chance that the epidemic is contained,
and thus a 30% chance of unbounded growth. (A) Median outcome (solid orange line) with uncertainty cone indicating the range of outcomes that
have 95% probability. (B) Sample of 35 independent, equally likely individual outcomes. (C) Frequency framing. Each square indicates one
possible outcome. Light squares represent epidemics that are contained, and dark squares represent epidemics that are not contained.

Simulation data courtesy of Mario Castro.

in particular near the mitigation-inhibition threshold where the ep-
idemic is just barely contained. Castro et al. demonstrate this effect
convincingly in movie S1 of ref. 1, where they show how prediction
accuracy changes as new daily cases are added.

These results underscore the importance of a fundamental
question in science communication: How can we accurately
convey predictions that are probabilistic in nature? This question
is well-studied in the context of weather forecasts. Even though
forecasts have become increasingly accurate (5), they have a rep-
utation for being misleading and unreliable. The crux of the prob-
lem is that most people expect a hard binary prediction—will it
rain tomorrow, or not?—when the weather forecast inherently can
only provide a probabilistic estimate—there is a 30% chance of rain
tomorrow. What happens in our minds is that we hear the proba-
bilistic prediction and turn it into a deterministic one. “A 30%
chance of rain” becomes "it's going to be sunny.” We are deeply
disappointed when, about 30% of the time, the opposite transpires.
This mistake of interpreting a probabilistic statement as determin-
istic has been dubbed "“deterministic construal error” (6), and most
static visualizations facilitate, if not outright encourage, it.

Most commonly, probabilistic predictions of time courses are
shown as a median outcome surrounded by a cone of uncertainty
(Fig. 1A). This type of visualization appears natural but draws ex-
cessive attention to the most likely outcomes. Looking at Fig. 1A,
readers may assume that the epidemic will necessarily be brought
under control because this is what happens on the orange line
representing the median outcome. The effect is exacerbated
when the cone of uncertainty omits considerable probability
mass, as with hurricane forecasts where the cone of uncertainty
includes the path of the hurricane’s center in only about two-thirds
of the cases (7).

Alternatively, we sometimes see multiple outcomes overlaid
on one another as individual traces (Fig. 1B). Such diagrams do a
better job of highlighting the variability in possible outcomes, but
it remains difficult to intuit the relative likelihood of various out-
comes. Instead, we could show only one trace at a time but switch
the display every half second or so to reveal a new trajectory.
Movie S1 provides an example. Such animated plots, termed “hy-
pothetical outcome plots,” may be more easily interpreted by
viewers (8). Of course, animations require a dynamic medium such
as a web browser, which can be a serious drawback. For print, it
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may be helpful simply to visualize the relative frequencies of dif-
ferent outcomes (e.g., the epidemic is contained or not) by draw-
ing a checkerboard pattern of differently colored squares in the
appropriate proportions (Fig. 1C). This type of visualization is
called “frequency framing,” and it helps viewers obtain an intui-
tive understanding of the relative likelihood of different events.
For example, an event with a 30% probability is sufficiently likely
that its occurrence should not be discounted. Most readers will
understand this intuitively from looking at a figure such as Fig. 1C.

Because data visualizations presented in research papers are
often extracted for use on social media, in news broadcasts, or in
press conferences, they should be sufficiently self-contained as to
make sense when lifted out of the manuscripts in which they
originally appeared. For example, when diagrams indicate uncer-
tainty ranges, readers tend to assume that these ranges include
the full scope of feasible outcomes. This was not the case for the
original Institute for Health Metrics and Evaluation (IHME) COVID
model (9). That model attempted to predict the trajectory of the
pandemic in the United States, empirically fitting case counts to a
distribution anchored on data from China, Italy, and Spain. As
such, the IHME model only encompassed scenarios in which lock-
down measures were sufficient to bring the US pandemic under
control. The cones of uncertainty depicted on the model and in
frequent White House press briefings during April did not represent
the full span from best case to worst case. Rather, they represented
the range of trajectories we might expect to see in a best-case
situation where the epidemic was brought under control and
eradicated by midsummer. This visualization gaffe may have
contributed to undue optimism that the pandemic would be
gone by autumn of 2020. The reverse cone of uncertainty in these
model projections—the cone narrowed to zero deaths by August
2020—exacerbated the potential for misinterpretation.

Although not the focus of the paper by Castro et al. (1), chang-
ing social factors pose a further and formidable obstacle to predicting
epidemic trajectories. Castro et al. consider a SIR (susceptible—
infected-recovered) model with an additional compartment repre-
senting confinement: individuals that have been removed from the
susceptible pool by entering some form of isolation. In their model,
the rates with which individuals enter or leave this confinement state
are fixed once some sort of intervention has been implemented.
In practice the government policies and individual attitudes that
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affect these rates are anything but static. They evolve unpredict-
ably, both in response to extrinsic political factors and to the
epidemic dynamics themselves.

Individual behavior coevolves with the epidemic trajectory.
Much as changes in economic policy alter optimal individual
decisions in ways that undermine macroeconomic models—this is
known as the Lucas critique (10)—epidemic control measures
change individual incentives to avoid transmission risk and thus
alter the dynamics by which disease spreads. For example, in the
absence of effective controls, people may take greater precau-
tions as case numbers are rising. As case numbers start to decline,
we see the reverse. This behavior generates a feedback cycle that
can sustain an epidemic for a long time, as preventative measures
lapse just when the epidemic is about to be brought under con-
trol. The epidemic curve of COVID-19 in the United States may
illustrate a dynamic of this kind. Where predictive models make
it into the popular consciousness they play into the feedback

cycle as well—sometimes in ways that undermine their own pre-
dictions. When models predict catastrophe, politicians and citi-
zens alike react in ways that help control disease. When models
suggest that an epidemic is certain to resolve in short order, onerous
control measures feel like overkill, people relax, and the epidemic
persists.

When using mathematical models to guide policy decisions or
interventions, we need to remember that epidemic forecasting
models do not give us exact predictions. Rather, they suggest ranges
of possible outcomes. We cannot afford to hope for the best possible
outcome and plan accordingly. If predictions have large uncertainties,
prudent policy errs on the side of caution. This seems obvious yet has
been frequently ignored with COVID-19, at dreadful cost.
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